Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.116
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.contributor.authorElssel, Kolja-
dc.date.accessioned2006-02-14T16:48:49Zde_DE
dc.date.available2006-02-14T16:48:49Zde_DE
dc.date.issued2006-01-
dc.identifier.citationPreprint. Published in Archive of Applied Mechanics. November 2006, Volume 76, Issue 3–4, pp 171–179de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/118-
dc.description.abstractSimulating numerically the sound radiation of a rolling tire requires the solution of a very large and sparse gyroscopic eigenvalue problem. Taking advantage of the automated multi– level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem, the solution of which however is still quite costly since the eigenmodes are non–real and complex arithmetic is necessary. This paper discusses the application of AMLS to huge gyroscopic problems and the numerical solution of the AMLS reduction. A numerical example demonstrates the efficiency of AMLS.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik; Bericht 96-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectEigenvaluede_DE
dc.subjectAMLSde_DE
dc.subjectgyroscopic eigenproblemde_DE
dc.subjectsubstructuringde_DE
dc.subjectnonlinear eigenproblemde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleReducing huge gyroscopic eigenproblems by automated multi-level substructuringde_DE
dc.typePreprintde_DE
dc.date.updated2006-02-15T15:15:51Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1749de_DE
dc.identifier.doi10.15480/882.116-
dc.type.dinipreprint-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.ddccode510-
dc.subject.msc65F50:Sparse matricesen
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dc.subject.msccode65F50-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1749de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id174de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/118-
tuhh.abstract.englishSimulating numerically the sound radiation of a rolling tire requires the solution of a very large and sparse gyroscopic eigenvalue problem. Taking advantage of the automated multi– level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem, the solution of which however is still quite costly since the eigenmodes are non–real and complex arithmetic is necessary. This paper discusses the application of AMLS to huge gyroscopic problems and the numerical solution of the AMLS reduction. A numerical example demonstrates the efficiency of AMLS.de_DE
tuhh.publisher.doi10.1007/s00419-006-0013-0-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.publication.instituteNumerische Simulation E-10 (H)de_DE
tuhh.identifier.doi10.15480/882.116-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768010-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber96de_DE
dc.identifier.scopus2-s2.0-33750006080-
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidVoß, Heinrich-
item.creatorOrcidElssel, Kolja-
item.mappedtypePreprint-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorGNDVoß, Heinrich-
item.creatorGNDElssel, Kolja-
item.seriesrefPreprints des Institutes für Mathematik;96-
item.fulltextWith Fulltext-
item.openairetypePreprint-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep96.pdf161,91 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

675
Last Week
1
Last month
9
checked on Aug 8, 2022

Download(s)

290
checked on Aug 8, 2022

SCOPUSTM   
Citations

14
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.