TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Training deep neural networks to reconstruct nanoporous structures from FIB tomography images using synthetic training data
 
Options

Training deep neural networks to reconstruct nanoporous structures from FIB tomography images using synthetic training data

Citation Link: https://doi.org/10.15480/882.4262
Publikationstyp
Journal Article
Date Issued
2022-02-28
Sprache
English
Author(s)
Sardhara, Trushal 
Aydin, Roland C.  
Li, Yong  orcid-logo
Piché, Nicolas  
Gauvin, Raynald  
Cyron, Christian J.  
Ritter, Martin  orcid-logo
Institut
Kontinuums- und Werkstoffmechanik M-15  
Betriebseinheit Elektronenmikroskopie M-26  
Werkstoffphysik und -technologie M-22  
TORE-DOI
10.15480/882.4262
TORE-URI
http://hdl.handle.net/11420/12121
Journal
Frontiers in materials  
Volume
9
Citation
Frontiers in Materials 9: (2022-02-28)
Publisher DOI
10.3389/fmats.2022.837006
Scopus ID
2-s2.0-85126651661
Publisher
Frontiers Media S.A.
Is Compiled By
https://doi.org/10.15480/336.3932
Focused ion beam (FIB) tomography is a destructive technique used to collect three-dimensional (3D) structural information at a resolution of a few nanometers. For FIB tomography, a material sample is degraded by layer-wise milling. After each layer, the current surface is imaged by a scanning electron microscope (SEM), providing a consecutive series of cross-sections of the three-dimensional material sample. Especially for nanoporous materials, the reconstruction of the 3D microstructure of the material, from the information collected during FIB tomography, is impaired by the so-called shine-through effect. This effect prevents a unique mapping between voxel intensity values and material phase (e.g., solid or void). It often substantially reduces the accuracy of conventional methods for image segmentation. Here we demonstrate how machine learning can be used to tackle this problem. A bottleneck in doing so is the availability of sufficient training data. To overcome this problem, we present a novel approach to generate synthetic training data in the form of FIB-SEM images generated by Monte Carlo simulations. Based on this approach, we compare the performance of different machine learning architectures for segmenting FIB tomography data of nanoporous materials. We demonstrate that two-dimensional (2D) convolutional neural network (CNN) architectures processing a group of adjacent slices as input data as well as 3D CNN perform best and can enhance the segmentation performance significantly.
Subjects
electron microscopy
synthetic training data
3D reconstruction
semantic segmentation
SEM simulation
3D CNN
2D CNN with adjacent slices
machine learning
MLE@TUHH
DDC Class
600: Technik
Funding(s)
SFB 986: Teilprojekt B09 - Mikrostrukturbasierte Klassifizierung und mechanische Analyse nanoporöser Metalle durch maschinelles Lernen  
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

fmats-09-837006-g007.tif

Size

2.16 MB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g003.tif

Size

1.25 MB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g008.tif

Size

141.52 KB

Format

TIFF

Loading...
Thumbnail Image
Name

DataSheet1.pdf

Size

2.76 MB

Format

Adobe PDF

Loading...
Thumbnail Image
Name

fmats-09-837006.pdf

Size

3.92 MB

Format

Adobe PDF

Loading...
Thumbnail Image
Name

fmats-09-837006-g002.tif

Size

819.71 KB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g001.tif

Size

1.15 MB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g006.tif

Size

1.1 MB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g005.tif

Size

184.39 KB

Format

TIFF

Loading...
Thumbnail Image
Name

fmats-09-837006-g004.tif

Size

1.6 MB

Format

TIFF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback