Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4306
DC FieldValueLanguage
dc.contributor.authorLiu, Yongfei-
dc.contributor.authorWang, Wei-
dc.contributor.authorZeng, An-Ping-
dc.date.accessioned2022-04-25T09:30:30Z-
dc.date.available2022-04-25T09:30:30Z-
dc.date.issued2022-03-24-
dc.identifier.citationNature Communications 13 (1): 1595 (2022)de_DE
dc.identifier.issn2041-1723de_DE
dc.identifier.urihttp://hdl.handle.net/11420/12347-
dc.description.abstractDiols encompass important bulk and fine chemicals for the chemical, pharmaceutical and cosmetic industries. During the past decades, biological production of C3-C5 diols from renewable feedstocks has received great interest. Here, we elaborate a general principle for effectively synthesizing structurally diverse diols by expanding amino acid metabolism. Specifically, we propose to combine oxidative and reductive formations of hydroxyl groups from amino acids in a thermodynamically favorable order of four reactions catalyzed by amino acid hydroxylase, L-amino acid deaminase, α-keto acid decarboxylase and aldehyde reductase consecutively. The oxidative formation of hydroxyl group from an alkyl group is energetically more attractive than the reductive pathway, which is exclusively used in the synthetic pathways of diols reported so far. We demonstrate this general route for microbial production of branched-chain diols in E. coli. Ten C3-C5 diols are synthesized. Six of them, namely isopentyldiol (IPDO), 2-methyl-1,3-butanediol (2-M-1,3-BDO), 2-methyl-1,4-butanediol (2-M-1,4-BDO), 2-methyl-1,3-propanediol (MPO), 2-ethyl-1,3-propanediol (2-E-1,3-PDO), 1,4-pentanediol (1,4-PTD), have not been biologically synthesized before. This work opens up opportunities for synthesizing structurally diverse diols and triols, especially by genome mining, rational design or directed evolution of proper enzymes.en
dc.language.isoende_DE
dc.publisherNature Publishing Group UKde_DE
dc.relation.ispartofNature communicationsde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject.ddc570: Biowissenschaften, Biologiede_DE
dc.subject.ddc600: Technikde_DE
dc.titleBiosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groupsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4306-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0181601-
tuhh.oai.showtruede_DE
tuhh.abstract.englishDiols encompass important bulk and fine chemicals for the chemical, pharmaceutical and cosmetic industries. During the past decades, biological production of C3-C5 diols from renewable feedstocks has received great interest. Here, we elaborate a general principle for effectively synthesizing structurally diverse diols by expanding amino acid metabolism. Specifically, we propose to combine oxidative and reductive formations of hydroxyl groups from amino acids in a thermodynamically favorable order of four reactions catalyzed by amino acid hydroxylase, L-amino acid deaminase, α-keto acid decarboxylase and aldehyde reductase consecutively. The oxidative formation of hydroxyl group from an alkyl group is energetically more attractive than the reductive pathway, which is exclusively used in the synthetic pathways of diols reported so far. We demonstrate this general route for microbial production of branched-chain diols in E. coli. Ten C3-C5 diols are synthesized. Six of them, namely isopentyldiol (IPDO), 2-methyl-1,3-butanediol (2-M-1,3-BDO), 2-methyl-1,4-butanediol (2-M-1,4-BDO), 2-methyl-1,3-propanediol (MPO), 2-ethyl-1,3-propanediol (2-E-1,3-PDO), 1,4-pentanediol (1,4-PTD), have not been biologically synthesized before. This work opens up opportunities for synthesizing structurally diverse diols and triols, especially by genome mining, rational design or directed evolution of proper enzymes.de_DE
tuhh.publisher.doi10.1038/s41467-022-29216-5-
tuhh.publication.instituteBioprozess- und Biosystemtechnik V-1de_DE
tuhh.identifier.doi10.15480/882.4306-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume13de_DE
dc.identifier.pmid35332143de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85127075048de_DE
tuhh.container.articlenumber1595de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.creatorGNDLiu, Yongfei-
item.creatorGNDWang, Wei-
item.creatorGNDZeng, An-Ping-
item.creatorOrcidLiu, Yongfei-
item.creatorOrcidWang, Wei-
item.creatorOrcidZeng, An-Ping-
item.languageiso639-1en-
item.mappedtypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptBioprozess- und Biosystemtechnik V-1-
crisitem.author.deptBioprozess- und Biosystemtechnik V-1-
crisitem.author.deptBioprozess- und Biosystemtechnik V-1-
crisitem.author.orcid0000-0001-9768-7096-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
s41467-022-29216-5.pdfVerlags-PDF1,78 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

35
Last Week
0
Last month
checked on Jul 3, 2022

Download(s)

12
checked on Jul 3, 2022

PubMed Central
Citations

1
Last Week
0
Last month
checked on Jul 3, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons