Titel: On the boundary conditions for EG-methods applied to the two-dimensional wave equation system
Sprache: Englisch
Autor/Autorin: Medviďová-Lukáčová, Mária 
Warnecke, Gerald 
Zahaykah, Yousef 
Schlagwörter: hyperbolic systems; wave equation; evolution Galerkin schemes; absorbing boundary conditions; reflecting boundary conditions
Erscheinungs­datum: Jun-2003
Zusammenfassung (englisch): 
The subject of the paper is the study of some nonreflecting and reflecting boundary conditions for the evolution Galerkin methods (EG) which are applied for the two-dimensional wave equation system. Different known tools are used to achieve this aim. Namely, the method of characteristics, the method of extrapolation, the Laplace transformation method, and the perfectly matched layer (PML) method. We show that the absorbing boundary conditions which are based on the use of the Laplace transformation lead to the Engquist-Majda first and second order absorbing boundary conditions. Further, following Berenger we consider the PML method. We discretize the wave equation system with the leap-frog scheme inside the PML while the evolution Galerkin schemes are used inside the computational domain. Numerical tests demonstrate that this method produces much less unphysical reflected waves as well as the best results in comparison with other techniques studied in the paper.
URI: http://tubdok.tub.tuhh.de/handle/11420/129
DOI: 10.15480/882.127
Institut: Mathematik E-10 
Dokumenttyp: Arbeitspapier
Lizenz: Unter Copyright Unter Copyright
Teil der Schriftenreihe: Preprints des Institutes für Mathematik 
Bandangabe: 63
Enthalten in den Sammlungen:Publications with fulltext

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
rep63.pdf891,4 kBAdobe PDFÖffnen/Anzeigen
Miniaturbild
Zur Langanzeige

Seitenansichten

624
Letzte Woche
1
Letzten Monat
6
checked on 01.10.2022

Download(s)

334
checked on 01.10.2022

Google ScholarTM

Prüfe

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.