Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4530
DC FieldValueLanguage
dc.contributor.authorLiu, Shun-
dc.contributor.authorLi, Hong-
dc.contributor.authorKruber, Bettina-
dc.contributor.authorSkiborowski, Mirko-
dc.contributor.authorGao, Xin-
dc.date.accessioned2022-08-04T08:23:03Z-
dc.date.available2022-08-04T08:23:03Z-
dc.date.issued2022-07-05-
dc.identifier.citationResults in Engineering 15: 100527 (2022-09-01)de_DE
dc.identifier.issn2590-1230de_DE
dc.identifier.urihttp://hdl.handle.net/11420/13379-
dc.description.abstractSince membrane separations, such as vapor permeation (VP) or pervaporation (PV), are not limited by vapor-liquid equilibrium, their coupling with distillation can exert a synergistic effect, overcome the thermodynamic limits of distillation, and improve energy efficiency, especially suitable for the separation of azeotropic mixtures that otherwise requires special distillation processes. Therefore, there is an increasing number of such studies, and it is of great significance to comprehensively explore the process integration of distillation with VP or PV. This review first introduces the mechanism model of membrane separation and membrane materials, then comprehensively summarizes the academic research in terms of hybrid configurations of distillation with VP or PV in the following aspects: separation of azeotropic or close-boiling mixtures, promoting reactions by selectively removing a product, and energy savings, providing guidelines for subsequent application and future research. Finally, this review gives typical industrial cases of distillation and membrane-coupled separation processes and highlights some deficiencies of current research in this area.en
dc.language.isoende_DE
dc.publisherElsevierde_DE
dc.relation.ispartofResults in engineeringde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subjectDistillationde_DE
dc.subjectMembranede_DE
dc.subjectPervaporationde_DE
dc.subjectProcess intensificationde_DE
dc.subjectVapor permeationde_DE
dc.subject.ddc600: Technikde_DE
dc.titleProcess intensification by integration of distillation and vapor permeation or pervaporation - an academic and industrial perspectivede_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.4530-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0193882-
tuhh.oai.showtruede_DE
tuhh.abstract.englishSince membrane separations, such as vapor permeation (VP) or pervaporation (PV), are not limited by vapor-liquid equilibrium, their coupling with distillation can exert a synergistic effect, overcome the thermodynamic limits of distillation, and improve energy efficiency, especially suitable for the separation of azeotropic mixtures that otherwise requires special distillation processes. Therefore, there is an increasing number of such studies, and it is of great significance to comprehensively explore the process integration of distillation with VP or PV. This review first introduces the mechanism model of membrane separation and membrane materials, then comprehensively summarizes the academic research in terms of hybrid configurations of distillation with VP or PV in the following aspects: separation of azeotropic or close-boiling mixtures, promoting reactions by selectively removing a product, and energy savings, providing guidelines for subsequent application and future research. Finally, this review gives typical industrial cases of distillation and membrane-coupled separation processes and highlights some deficiencies of current research in this area.de_DE
tuhh.publisher.doi10.1016/j.rineng.2022.100527-
tuhh.publication.instituteSystemverfahrenstechnik V-4de_DE
tuhh.identifier.doi10.15480/882.4530-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume15de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85134173164de_DE
tuhh.container.articlenumber100527de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThis project has received funding from the National Key R&D Program of China (2019YFE0123200) and the Haihe Laboratory of Sustainable Chemical Transformations.de_DE
datacite.resourceTypeArticle-
datacite.resourceTypeGeneralJournalArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLiu, Shun-
item.creatorGNDLi, Hong-
item.creatorGNDKruber, Bettina-
item.creatorGNDSkiborowski, Mirko-
item.creatorGNDGao, Xin-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLiu, Shun-
item.creatorOrcidLi, Hong-
item.creatorOrcidKruber, Bettina-
item.creatorOrcidSkiborowski, Mirko-
item.creatorOrcidGao, Xin-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptSystemverfahrenstechnik V-4-
crisitem.author.orcid0000-0001-9694-963X-
crisitem.author.orcid0000-0002-0739-8440-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S2590123022001979-main.pdfVerlags-PDF9,13 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

37
checked on Aug 11, 2022

Download(s)

13
checked on Aug 11, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons