Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1872
This item is licensed with a CreativeCommons licence by/4.0
DC FieldValueLanguage
dc.contributor.authorPapangelo, Antonio-
dc.contributor.authorCiavarella, Michele-
dc.contributor.authorHoffmann, Norbert-
dc.date.accessioned2018-11-26T10:18:32Z-
dc.date.available2018-11-26T10:18:32Z-
dc.date.issued2017-09-26-
dc.identifier.citationNonlinear Dynamics 3 (90): 2037-2046 (2017-26-09)de_DE
dc.identifier.issn1573-269Xde_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1875-
dc.description.abstractThe dynamical behavior of a single-degree-of-freedom system that experiences friction-induced vibrations is studied with particular interest on the possibility of the so-called hard effect of a subcritical Hopf bifurcation, using a velocity weakening–strengthening friction law. The bifurcation diagram of the system is numerically evaluated using as bifurcation parameter the velocity of the belt. Analytical results are provided using standard linear stability analysis and nonlinear stability analysis to large perturbations. The former permits to identify the lowest belt velocity (vlw) at which the full sliding solution is stable, the latter allows to estimate a priori the highest belt velocity at which large amplitude stick–slip vibrations exist. Together the two boundaries [ vlw, vup] define the range where two equilibrium solutions coexist, i.e., a stable full sliding solution and a stable stick–slip limit cycle. The model is used to fit recent experimental observations.en
dc.description.sponsorshipDFGde_DE
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofNonlinear Dynamicsde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectmass-on-moving-belt modelde_DE
dc.subjectexponential decayingde_DE
dc.subjectweakening–strengthening friction lawde_DE
dc.subjectbistable equilibriumde_DE
dc.subjectsubcritical bifurcationde_DE
dc.subject.ddc500: Naturwissenschaftende_DE
dc.subject.ddc530: Physikde_DE
dc.titleSubcritical bifurcation in a self-excited single-degree-of-freedom system with velocity weakening-strengthening friction law: analytical results and comparison with experimentsde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.023846-
dc.identifier.doi10.15480/882.1872-
dc.type.diniarticle-
dc.subject.ddccode530-
dc.subject.ddccode500-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.023846de_DE
tuhh.oai.showtrue-
dc.identifier.hdl11420/1875-
tuhh.abstract.englishThe dynamical behavior of a single-degree-of-freedom system that experiences friction-induced vibrations is studied with particular interest on the possibility of the so-called hard effect of a subcritical Hopf bifurcation, using a velocity weakening–strengthening friction law. The bifurcation diagram of the system is numerically evaluated using as bifurcation parameter the velocity of the belt. Analytical results are provided using standard linear stability analysis and nonlinear stability analysis to large perturbations. The former permits to identify the lowest belt velocity (vlw) at which the full sliding solution is stable, the latter allows to estimate a priori the highest belt velocity at which large amplitude stick–slip vibrations exist. Together the two boundaries [ vlw, vup] define the range where two equilibrium solutions coexist, i.e., a stable full sliding solution and a stable stick–slip limit cycle. The model is used to fit recent experimental observations.de_DE
tuhh.publisher.doi10.1007/s11071-017-3779-4-
tuhh.publication.instituteStrukturdynamik M-14de_DE
tuhh.identifier.doi10.15480/882.1872-
tuhh.type.opus(wissenschaftlicher) Artikelde
tuhh.institute.germanStrukturdynamik M-14de
tuhh.institute.englishStrukturdynamik M-14de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.ccbyde_DE
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Articleen
tuhh.container.issue3de_DE
tuhh.container.volume90de_DE
tuhh.container.startpage2037de_DE
tuhh.container.endpage2046de_DE
dc.relation.projectHO 3852/11-1de_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.creatorOrcidPapangelo, Antonio-
item.creatorOrcidCiavarella, Michele-
item.creatorOrcidHoffmann, Norbert-
item.creatorGNDPapangelo, Antonio-
item.creatorGNDCiavarella, Michele-
item.creatorGNDHoffmann, Norbert-
item.grantfulltextopen-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.deptStrukturdynamik M-14-
crisitem.author.orcid0000-0002-0214-904X-
crisitem.author.orcid0000-0001-6271-0081-
crisitem.author.orcid0000-0003-2074-3170-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
Papangelo2017_Article_SubcriticalBifurcationInASelf-.pdfVerlags-PDF764,74 kBAdobe PDFView/Open
Show simple item record

Page view(s)

14
Last Week
0
Last month
6
checked on Apr 21, 2019

Download(s)

14
checked on Apr 21, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons