Please use this identifier to cite or link to this item:
Publisher DOI: 10.7150/thno.13728
Title: Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo
Language: English
Authors: Zheng, Bo 
See, Marc Philip von 
Yu, Elaine 
Gunel, Beliz 
Lu, Kuan 
Vazin, Tandis 
Schaffer, David V. 
Goodwill, Patrick W. 
Conolly, Steven M. 
Keywords: magnetic particle imaging;mesenchymal stem cells;cell therapy tracking;quantitative imaging
Issue Date: 1-Jan-2016
Publisher: Ivyspring
Source: Theranostics 3 (6): 291-301 (2016-01-01)
Journal or Series Name: Theranostics 
Abstract (english): Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R2 = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents.
DOI: 10.15480/882.2020
ISSN: 1838-7640
Institute: Medizintechnische Systeme E-1 
Type: (wissenschaftlicher) Artikel
License: CC BY-NC 4.0 (Attribution-NonCommercial) CC BY-NC 4.0 (Attribution-NonCommercial)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
v06p0291.pdfVerlags-PDF1,15 MBAdobe PDFThumbnail
Show full item record

Google ScholarTM


Note about this record


This item is licensed under a Creative Commons License Creative Commons