Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2078
DC FieldValueLanguage
dc.contributor.authorBesler, Robert-
dc.contributor.authorBauer, Markus-
dc.contributor.authorPagnan Furlan, Kaline-
dc.contributor.authorKlein, Aloisio Nelmo-
dc.contributor.authorJanßen, Rolf-
dc.date.accessioned2019-03-12T08:31:51Z-
dc.date.available2019-03-12T08:31:51Z-
dc.date.issued2017-08-21-
dc.identifier.citationMaterials Research 6 (20): 1518-1524 (2017)de_DE
dc.identifier.issn1980-5373de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2082-
dc.description.abstractPowder metallurgy is a growing sector in industrial production, as it offers outstanding energy, cost and material savings in comparison with established processing routes such as casting. Hot work toll steels are usually produced by ingot metallurgy, but also by powder metallurgy, namely hot isostatic pressing and powder forging routes. In this paper we investigate the possibility of production of a hot work tool steel (AISI H13) by conventional (die compaction and pressureless sintering) and metal injection molding routes, aiming to reduce cost and production time. The sintering behavior was studied from 1250 °C until 1430 °C and the resulting parts were compared in terms of microstructure, hardness and tensile strength. The results showed that both shaping routes together with pressureless sintering are suitable to produce this alloy. By combining the best shaping approach and a tailored sintering cycle, it was possible to produce samples with 400 HV10 as well as tensile strength of 1 GPa, which are comparable to the ones obtained by powder forging.en
dc.language.isoende_DE
dc.publisherFederal University of São Carlos, Department of Material Engineering ; Associação Brasileira de Metalurgia e Materiais (ABM), ABC, ABPol, SBCC, SBCr, SBMM ; SciELOde_DE
dc.relation.ispartofMaterials Researchde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectpowder metallurgyde_DE
dc.subjectsteelde_DE
dc.subjectdilatometryde_DE
dc.subjecthardness measurementde_DE
dc.subjectmechanical characterizationde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleEffect of processing route on the microstructure and mechanical properties of hot work tool steelde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.027568-
dc.identifier.doi10.15480/882.2078-
dc.type.diniarticle-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.027568-
tuhh.oai.showtruede_DE
tuhh.abstract.englishPowder metallurgy is a growing sector in industrial production, as it offers outstanding energy, cost and material savings in comparison with established processing routes such as casting. Hot work toll steels are usually produced by ingot metallurgy, but also by powder metallurgy, namely hot isostatic pressing and powder forging routes. In this paper we investigate the possibility of production of a hot work tool steel (AISI H13) by conventional (die compaction and pressureless sintering) and metal injection molding routes, aiming to reduce cost and production time. The sintering behavior was studied from 1250 °C until 1430 °C and the resulting parts were compared in terms of microstructure, hardness and tensile strength. The results showed that both shaping routes together with pressureless sintering are suitable to produce this alloy. By combining the best shaping approach and a tailored sintering cycle, it was possible to produce samples with 400 HV10 as well as tensile strength of 1 GPa, which are comparable to the ones obtained by powder forging.de_DE
tuhh.publisher.doi10.1590/1980-5373-mr-2016-0726-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.2078-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKeramische Hochleistungswerkstoffe M-9de
tuhh.institute.englishKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.ccversion4.0de_DE
dc.type.casraiJournal Article-
tuhh.container.issue6de_DE
tuhh.container.volume20de_DE
tuhh.container.startpage1518de_DE
tuhh.container.endpage1524de_DE
dc.rights.nationallicensefalsede_DE
item.fulltextWith Fulltext-
item.creatorOrcidBesler, Robert-
item.creatorOrcidBauer, Markus-
item.creatorOrcidPagnan Furlan, Kaline-
item.creatorOrcidKlein, Aloisio Nelmo-
item.creatorOrcidJanßen, Rolf-
item.grantfulltextopen-
item.languageiso639-1other-
item.creatorGNDBesler, Robert-
item.creatorGNDBauer, Markus-
item.creatorGNDPagnan Furlan, Kaline-
item.creatorGNDKlein, Aloisio Nelmo-
item.creatorGNDJanßen, Rolf-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0003-4032-2795-
crisitem.author.orcid0000-0002-7282-635X-
crisitem.author.orcid0000-0001-7054-0510-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications (tub.dok)
Files in This Item:
File Description SizeFormat
1516-1439-mr-1980-5373-MR-2016-0726.pdfVerlags-PDF1,37 MBAdobe PDFView/Open
Show simple item record

Page view(s)

50
Last Week
1
Last month
7
checked on Jun 25, 2019

Download(s)

49
checked on Jun 25, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons