DC FieldValueLanguage
dc.contributor.authorHubrich, Simeon-
dc.contributor.authorDüster, Alexander-
dc.date.accessioned2019-04-16T13:35:42Z-
dc.date.available2019-04-16T13:35:42Z-
dc.date.issued2019-04-01-
dc.identifier.citationComputers and Mathematics with Applications 7 (77): 1983-1997 (2019-04-01)de_DE
dc.identifier.issn0898-1221de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2314-
dc.description.abstractFictitious domain methods such as the finite cell method simplify the discretization process significantly as the mesh is decoupled from the geometrical description. However, this simplification in the mesh generation results in broken cells, which is why special integration methods are required. Usually, adaptive integration schemes are applied resulting in a large number of integration points and, thus, an expensive numerical integration — especially for nonlinear applications. To perform the numerical integration more efficiently, we propose an adaptive integration method using moment fitting. Thereby, we present a moment fitting approach based on Lagrange polynomials through Gauss–Legendre points to circumvent having to solve the moment fitting equation system. The performance of this integration method is shown by studying several numerical examples of the finite cell method for small and large strain problems in elastoplasticity.en
dc.language.isoende_DE
dc.relation.ispartofComputers and mathematics with applicationsde_DE
dc.titleNumerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fittingde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishFictitious domain methods such as the finite cell method simplify the discretization process significantly as the mesh is decoupled from the geometrical description. However, this simplification in the mesh generation results in broken cells, which is why special integration methods are required. Usually, adaptive integration schemes are applied resulting in a large number of integration points and, thus, an expensive numerical integration — especially for nonlinear applications. To perform the numerical integration more efficiently, we propose an adaptive integration method using moment fitting. Thereby, we present a moment fitting approach based on Lagrange polynomials through Gauss–Legendre points to circumvent having to solve the moment fitting equation system. The performance of this integration method is shown by studying several numerical examples of the finite cell method for small and large strain problems in elastoplasticity.de_DE
tuhh.publisher.doi10.1016/j.camwa.2018.11.030-
tuhh.publication.instituteKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKonstruktion und Festigkeit von Schiffen M-10de
tuhh.institute.englishKonstruktion und Festigkeit von Schiffen M-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue7de_DE
tuhh.container.volume77de_DE
tuhh.container.startpage1983de_DE
tuhh.container.endpage1997de_DE
dc.relation.projectSPP 1748: Teilprojekt "High-Order Immersed-Boundary-Methoden in der Festkörpermechanik für generativ gefertigte Strukturen"-
dc.identifier.scopus2-s2.0-85058577099-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.languageiso639-1en-
item.creatorGNDHubrich, Simeon-
item.creatorGNDDüster, Alexander-
item.creatorOrcidHubrich, Simeon-
item.creatorOrcidDüster, Alexander-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.deptKonstruktion und Festigkeit von Schiffen M-10-
crisitem.author.orcid0000-0002-2162-3675-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoDU 405/8-2-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

162
Last Week
1
Last month
4
checked on Dec 8, 2022

SCOPUSTM   
Citations

13
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.