Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.232
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2006-04-12T14:43:31Zde_DE
dc.date.available2006-04-12T14:43:31Zde_DE
dc.date.issued2006-04-
dc.identifier.citationPreprint. Published in: Linear Algebra and its ApplicationsVolume 424, Issues 2–3, 15 July 2007, Pages 448-455de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/234-
dc.description.abstractThe Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 99-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectlarge eigenvalue problemde_DE
dc.subjectiterative projection methodde_DE
dc.subjectJacobi–Davidson methodde_DE
dc.subjectinexact Krylov subspace methodsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleA new justification of the Jacobi–Davidson method for large eigenproblemsde_DE
dc.typePreprintde_DE
dc.date.updated2006-04-20T12:25:33Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-2978de_DE
dc.identifier.doi10.15480/882.232-
dc.type.dinipreprint-
dc.subject.gndEigenwertproblemde
dc.subject.gndProjektionsmethodede
dc.subject.gndKrylov-Verfahrende
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-2978de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id297de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/234-
tuhh.abstract.englishThe Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.de_DE
tuhh.publisher.doi10.1016/j.laa.2007.02.013-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.publication.instituteNumerische Simulation E-10 (H)de_DE
tuhh.identifier.doi10.15480/882.232-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768491-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber99de_DE
dc.identifier.scopus2-s2.0-34248554446-
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorGNDVoß, Heinrich-
item.openairetypePreprint-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.seriesrefPreprints des Institutes für Mathematik;99-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep99.pdf139,48 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

450
Last Week
1
Last month
6
checked on Aug 17, 2022

Download(s)

249
checked on Aug 17, 2022

SCOPUSTM   
Citations

20
Last Week
1
Last month
1
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.