DC FieldValueLanguage
dc.contributor.authorBlandre, Etienne-
dc.contributor.authorJalas, Dirk-
dc.contributor.authorPetrov, Alexander-
dc.contributor.authorEich, Manfred-
dc.date.accessioned2019-04-30T07:31:52Z-
dc.date.available2019-04-30T07:31:52Z-
dc.date.issued2018-09-19-
dc.identifier.citationACS Photonics 9 (5): 3613-3620 (2018-09-19)de_DE
dc.identifier.issn2330-4022de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2568-
dc.description.abstractHot electron generation in a metal and injection into a semiconductor is a crucial mechanism to convert sub band gap photons into free electrical charges inside a semiconductor. This process is of paramount importance for solar photocatalysis since the semiconductors involved often have a band gap too large for direct excitation with sun light, thus requiring a carrier transfer from an adjacent effective absorber, which in our case is a metal, to the semiconductor in order to initiate the envisaged photochemical reactions. Single interaction of a hot electron with a metal-semiconductor boundary is described by Fowler's law. In nanometer sized metals hot electrons, before they lose their energy, can interact several times with the boundary, which increases the probability of injection. To understand the efficiency of this process, to find ways to optimize it, and to determine its limits, an electron transport model based on a Monte Carlo approach is proposed. The numerical calculations provide an in-depth understanding of the impact of size and shape of the metal on the injection efficiency. Values are obtained that exceed the usual efficiency limits described by Fowler's theory.en
dc.language.isoende_DE
dc.relation.ispartofACS photonicsde_DE
dc.titleLimit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approachde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishHot electron generation in a metal and injection into a semiconductor is a crucial mechanism to convert sub band gap photons into free electrical charges inside a semiconductor. This process is of paramount importance for solar photocatalysis since the semiconductors involved often have a band gap too large for direct excitation with sun light, thus requiring a carrier transfer from an adjacent effective absorber, which in our case is a metal, to the semiconductor in order to initiate the envisaged photochemical reactions. Single interaction of a hot electron with a metal-semiconductor boundary is described by Fowler's law. In nanometer sized metals hot electrons, before they lose their energy, can interact several times with the boundary, which increases the probability of injection. To understand the efficiency of this process, to find ways to optimize it, and to determine its limits, an electron transport model based on a Monte Carlo approach is proposed. The numerical calculations provide an in-depth understanding of the impact of size and shape of the metal on the injection efficiency. Values are obtained that exceed the usual efficiency limits described by Fowler's theory.de_DE
tuhh.publisher.doi10.1021/acsphotonics.8b00473-
tuhh.publication.instituteOptische und Elektronische Materialien E-12de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanE-12de
tuhh.institute.englishOptische und Elektronische Materialien E-12de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue9de_DE
tuhh.container.volume5de_DE
tuhh.container.startpage3613de_DE
tuhh.container.endpage3620de_DE
dc.relation.projectSFB 986: Teilprojekt C1 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaikde_DE
dc.relation.projectPlasmon induced hot electron injection for photocatalysis-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.creatorOrcidBlandre, Etienne-
item.creatorOrcidJalas, Dirk-
item.creatorOrcidPetrov, Alexander-
item.creatorOrcidEich, Manfred-
item.cerifentitytypePublications-
item.creatorGNDBlandre, Etienne-
item.creatorGNDJalas, Dirk-
item.creatorGNDPetrov, Alexander-
item.creatorGNDEich, Manfred-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptOptische und Elektronische Materialien E-12-
crisitem.author.deptOptische und Elektronische Materialien E-12-
crisitem.author.deptOptische und Elektronische Materialien E-12-
crisitem.author.deptOptische und Elektronische Materialien E-12-
crisitem.author.orcid0000-0002-2240-9259-
crisitem.author.orcid0000-0003-2589-2765-
crisitem.author.orcid0000-0002-9213-9645-
crisitem.author.orcid0000-0002-3096-5693-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderTechnische Universität Hamburg-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid04bs1pb34-
crisitem.project.grantno192346071-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

103
Last Week
0
Last month
2
checked on Jan 17, 2021

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.