TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators
 
Options

Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators

Citation Link: https://doi.org/10.15480/882.2251
Publikationstyp
Journal Article
Date Issued
2015-10-05
Sprache
English
Author(s)
Lipka, Timo  
Moldenhauer, Lennart  
Müller, Jörg  
Trieu, Hoc Khiem  
Institut
Mikrosystemtechnik E-7  
TORE-DOI
10.15480/882.2251
TORE-URI
http://hdl.handle.net/11420/2664
Journal
IEEE photonics journal  
Volume
7
Issue
5
Start Page
Art. Nr. 6600211
Citation
IEEE Photonics Journal 5 (7): 1-11 (2015-10-05)
Publisher DOI
10.1109/JPHOT.2015.2487139
Scopus ID
2-s2.0-84959016858
Publisher
IEEE
Optical multiplexers are key components of modern data transmission systems that have evolved from long-haul fiber communication applications down to the photonic interconnect level on-chip, which demand high bandwidths and low-power photonic links with small footprint. We present compact, energy-efficient, and high-bandwidth optical add/drop multiplexers that are based on complementary metal-oxide-semiconductor (CMOS) backend-compatible hydrogenated amorphous silicon microring resonators. We study the manufacturing nonuniformity of the as-fabricated devices and analyze the static power consumption that is required to actively align the multiplexers to a 100-GHz grid by using state-of-the-art microheaters. The microring filter banks are in excellent agreement with the design and satisfy a good tradeoff between concurrent properties of high-data-rate capability, low filter loss, high channel isolation, and manufacturing uniformity, which facilitates the operation with low static power consumption. In addition, we demonstrate that it is possible to permanently correct the unavoidable fabrication imperfections and to arrange the individual wavelength channels by a postfabrication trimming method so that the static power is reduced by more than an order of magnitude and allows minimization of these parts of the overall power requirements of such photonic integrated circuits down to record low metrics of a few femtojoules per bit.
Subjects
Amorphous silicon
a-Si:H
integrated optics
photonic interconnects
dielectric photonic wire waveguides
microring
wavelength multiplexer
add drop filter
thermooptic tuning
trimming
DDC Class
600: Technik
Funding(s)
Biosensor auf Basis integrierter Photonik  
Lizenz
https://creativecommons.org/licenses/by/3.0/
Loading...
Thumbnail Image
Name

07289343.pdf

Size

1.11 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback