Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2107
DC FieldValueLanguage
dc.contributor.authorRathjens, Matthias-
dc.contributor.authorFieg, Georg-
dc.date.accessioned2019-05-24T08:09:25Z-
dc.date.available2019-05-24T08:09:25Z-
dc.date.issued2019-02-26-
dc.identifierdoi: 10.3390/en12050784-
dc.identifier.citationEnergies 12 (5): 784 (2019)de_DE
dc.identifier.issn1996-1073de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2694-
dc.description.abstractIn this article an approach to incorporate a flexible cost functions framework into the cost-optimal design of heat exchanger networks (HENs) is presented. This framework allows the definition of different cost functions for each connection of heat source and sink independent of process stream or utility stream. Therefore, it is possible to use match-based individual factors to account for different fluid properties and resulting engineering costs. Layout-based factors for piping and pumping costs play an important role here as cost driver. The optimization of the resulting complex mixed integer nonlinear programming (MINLP) problem is solved with a genetic algorithm coupled with deterministic local optimization techniques. In order to show the functionality of the chosen approach one well studied HEN synthesis example from literature for direct heat integration is studied with standard cost functions and also considering additional piping costs. Another example is presented which incorporates indirect heat integration and related pumping and piping costs. The versatile applicability of the chosen approach is shown. The results represent designs with lower total annual costs (TAC) compared to literature.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofEnergiesde_DE
dc.rightsCC BY 4.0de_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectheat exchanger networkde_DE
dc.subjectHENde_DE
dc.subjectsynthesisde_DE
dc.subjectoptimizationde_DE
dc.subjectdirect heat integrationde_DE
dc.subjectindirect heat integrationde_DE
dc.subjectpipingde_DE
dc.subjectpumpingde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleCost-optimal heat exchanger network synthesis based on a flexible cost functions frameworkde_DE
dc.typeArticlede_DE
dc.date.updated2019-03-15T16:02:24Z-
dc.identifier.urnurn:nbn:de:gbv:830-882.028786-
dc.identifier.doi10.15480/882.2107-
dc.type.diniarticle-
dc.subject.ddccode600-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.028786-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIn this article an approach to incorporate a flexible cost functions framework into the cost-optimal design of heat exchanger networks (HENs) is presented. This framework allows the definition of different cost functions for each connection of heat source and sink independent of process stream or utility stream. Therefore, it is possible to use match-based individual factors to account for different fluid properties and resulting engineering costs. Layout-based factors for piping and pumping costs play an important role here as cost driver. The optimization of the resulting complex mixed integer nonlinear programming (MINLP) problem is solved with a genetic algorithm coupled with deterministic local optimization techniques. In order to show the functionality of the chosen approach one well studied HEN synthesis example from literature for direct heat integration is studied with standard cost functions and also considering additional piping costs. Another example is presented which incorporates indirect heat integration and related pumping and piping costs. The versatile applicability of the chosen approach is shown. The results represent designs with lower total annual costs (TAC) compared to literature.de_DE
tuhh.relation.ispartofEnergies-
tuhh.publisher.doi10.3390/en12050784-
tuhh.publication.instituteProzess- und Anlagentechnik V-4de_DE
tuhh.identifier.doi10.15480/882.2107-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanProzess- und Anlagentechnik V-4de
tuhh.institute.englishProzess- und Anlagentechnik V-4de_DE
tuhh.gvk.hasppnfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessde_DE
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue5de_DE
tuhh.container.volume12de_DE
tuhh.container.startpageArt.-Nr. 784de_DE
dc.relation.projectOpen Access Publizieren 2018 - 2019 / TU Hamburgde_DE
dc.rights.nationallicensefalsede_DE
item.languageiso639-1other-
item.creatorOrcidRathjens, Matthias-
item.creatorOrcidFieg, Georg-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.creatorGNDRathjens, Matthias-
item.creatorGNDFieg, Georg-
crisitem.author.deptProzess- und Anlagentechnik V-4-
crisitem.author.deptProzess- und Anlagentechnik V-4-
crisitem.author.orcid0000-0002-5514-949X-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext (tub.dok)
Files in This Item:
File Description SizeFormat
energies-12-00784-v2.pdf1,49 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

67
Last Week
2
Last month
7
checked on Sep 20, 2019

Download(s)

43
checked on Sep 20, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons