Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.2309
Publisher DOI: | 10.3389/fmats.2019.00110 | Title: | A review of the application of machine learning and data mining approaches in continuum materials mechanics | Language: | English | Authors: | Bock, Frederic E. Aydin, Roland C. Cyron, Christian J. Huber, Norbert ![]() Kalidindi, Surya R. Klusemann, Benjamin |
Keywords: | machine learning; materials mechanics; data mining; process-structure-property-performance relationship; knowledge discovery | Issue Date: | 15-May-2019 | Source: | Frontiers in Materials (6): 110 (2019) | Abstract (english): | Machine learning tools represent key enablers for empowering material scientists and engineers to accelerate the development of novel materials, processes and techniques. One of the aims of using such approaches in the field of materials science is to achieve high-throughput identification and quantification of essential features along the process-structure-property-performance chain. In this contribution, machine learning and statistical learning approaches are reviewed in terms of their successful application to specific problems in the field of continuum materials mechanics. They are categorized with respect to their type of task designated to be either descriptive, predictive or prescriptive; thus to ultimately achieve identification, prediction or even optimization of essential characteristics. The respective choice of the most appropriate machine learning approach highly depends on the specific use-case, type of material, kind of data involved, spatial and temporal scales, formats, and desired knowledge gain as well as affordable computational costs. Different examples are reviewed involving case-by-case dependent application of different types of artificial neural networks and other data-driven approaches such as support vector machines, decision trees and random forests as well as Bayesian learning, and model order reduction procedures such as principal component analysis, among others. These techniques are applied to accelerate the identification of material parameters or salient features for materials characterization, to support rapid design and optimization of novel materials or manufacturing methods, to improve and correct complex measurement devices, or to better understand and predict fatigue behavior, among other examples. Besides experimentally obtained datasets, numerous studies draw required information from simulation-based data mining. Altogether, it is shown that experiment- and simulation-based data mining in combination with machine leaning tools provide exceptional opportunities to enable highly reliant identification of fundamental interrelations within materials for characterization and optimization in a scale-bridging manner. Potentials of further utilizing applied machine learning in materials science and empowering significant acceleration of knowledge output are pointed out. |
URI: | http://hdl.handle.net/11420/2852 | DOI: | 10.15480/882.2309 | ISSN: | 2296-8016 | Journal: | Frontiers in Materials | Institute: | Kontinuums- und Werkstoffmechanik M-15 Werkstoffphysik und -technologie M-22 |
Document Type: | Article | Project: | SFB 986: Teilprojekt B9 - Mikrostrukturbasierte Klassifizierung und mechanische Analyse nanoporöser Metalle durch maschinelles Lernen | License: | ![]() |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
fmats-06-00110.pdf | Verlagsversion | 7,23 MB | Adobe PDF | View/Open![]() |
Page view(s)
405
Last Week
1
1
Last month
7
7
checked on Jun 2, 2023
Download(s)
312
checked on Jun 2, 2023
SCOPUSTM
Citations
116
Last Week
1
1
Last month
5
5
checked on Jun 30, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
This item is licensed under a Creative Commons License