Titel: Reduction of dynamic cable stiffness to linear matrix polynomial
Sprache: English
Autor/Autorin: Starossek, Uwe 
Erscheinungsdatum: 1993
Quellenangabe: Journal of Engineering Mechanics, Vol. 119, No. 10, 1993, pp. 2132-2136
Zeitschrift oder Schriftenreihe: Journal of engineering mechanics 
Zusammenfassung (englisch): For the dynamic stiffness of a sagging cable subject to harmonic boundary displacements, frequency-dependent closed-form analytic functions can be derived from the corresponding continuum equations. When considering such functions in stiffness matrices of composed structures, however, these matrices become frequency dependent, too - a troublesome fact, especially in regards to the eigenvalue difficulties is described whereby an analytic dynamic stiffness function is reduced to a linear matrix polynomial; the matrices of this polynomial are of any desired order. The reduction corresponds to a mathematically performed transition from a continuum to a discrete-coordinate vibrating system. In structural dynamic applications (dynamic cable stiffness), the two resultant matrices correspond to a static stiffness matrix and a mass matrix. Beyond the particular problem focused on, the method may be applied to all kinds of analytic impedance functions. In every case, the resultant matrices can easily be considered within the scope of a linear matrix-eigenvalue problem.
URI: http://tubdok.tub.tuhh.de/handle/11420/325
DOI: 10.15480/882.323
ISSN: 1943-7889
Institut: Baustatik B-4 
Dokumenttyp: (wissenschaftlicher) Artikel
Enthalten in den Sammlungen:Publications (tub.dok)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Reduction_of_dynamic_cable_stiffness_to_linear_matrix_polynomial.pdf2,07 MBAdobe PDFMiniaturbild
Zur Langanzeige


Letzte Woche
Letzten Monat
checked on 22.03.2019


checked on 22.03.2019

Google ScholarTM



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.