TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Optimizing temperature and pressure in PEM electrolyzers: A model-based approach to enhanced efficiency in integrated energy systems
 
Options

Optimizing temperature and pressure in PEM electrolyzers: A model-based approach to enhanced efficiency in integrated energy systems

Citation Link: https://doi.org/10.15480/882.14212
Citation Link: https://doi.org/10.15480/882.14212
Publikationstyp
Journal Article
Date Issued
2025-02-01
Sprache
English
Author(s)
Bornemann, Luka  
Umwelttechnik und Energiewirtschaft V-9  
Lange, Jelto  
Umwelttechnik und Energiewirtschaft V-9  
Kaltschmitt, Martin  
Umwelttechnik und Energiewirtschaft V-9  
TORE-DOI
10.15480/882.14212
10.15480/882.14212
TORE-URI
https://tore.tuhh.de/handle/11420/52901
Journal
Energy conversion and management  
Volume
325
Article Number
119338
Citation
Energy Conversion and Management 325: 119338 (2025)
Publisher DOI
10.1016/j.enconman.2024.119338
Scopus ID
2-s2.0-85211053906
Publisher
Elsevier
Hydrogen stands as a promising energy carrier within the ongoing energy supply transformation, yet its production via electrolyzers remains prohibitively costly. To address this challenge, this paper proposes an advanced equation-oriented process model for a PEM (Polymer-Electrolyte-Membrane) electrolysis system, including the electrolyzer and downstream hydrogen compression, aimed at optimizing the interaction of its operating parameters (i.e., current density, temperature, pressure). Initially, the model is utilized to analyze the isolated performance of the electrolysis system through operational flowsheet optimizations, followed by its integration into a broader energy system for operational planning optimization. The study reveals several key findings: optimizing operational parameters, rather than using fixed values at the maximum, improves peak system efficiency by approximately 5 %pt. and shifts this peak to lower current densities, thus expanding the range of high-efficiency operation. Each current density has an optimal pair of temperature and pressure, with maximum temperatures only advantageous at loads above 40%, while maximum operating pressure is suboptimal across the entire load range. The analysis indicates that incorporating operating parameter optimization within the operational planning of the electrolysis system reduces energy consumption by 4% and operating costs by 7% in the evaluated energy system. Additionally, the study distinguishes between optimizing the electrolyzer's operating parameters for maximizing its own efficiency and for system efficiency (i.e., including hydrogen compression). It demonstrates that maximum system efficiency is achievable only when the electrolyzer considers hydrogen compression in its operation mode, accepting some efficiency losses individually but yielding greater efficiency gains in the context of hydrogen compression. In summary, the findings of this paper suggest that continuously operating a PEM electrolyzer at maximum temperature and pressure may not be the most efficient approach. Instead, dynamic adjustments based on current density improve operational efficiency, thereby reducing electricity consumption and operating costs. Evaluating the electrolyzer within the broader energy system context – and accepting minor efficiency losses at the electrolyzer level – can yield significant overall benefits and savings. These results underscore the importance of comprehensive, context-aware strategies in advancing cost-effective green hydrogen production.
Subjects
Energy system optimization | Green hydrogen | Nonlinear programming | Polymer-electrolyte-membrane electrolyzer | Process optimization
DDC Class
660.6: Biotechnology
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0196890424012792-main.pdf

Type

Main Article

Size

2.22 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback