Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.59
Fulltext available Open Access
Title: Automated Multilevel Substructuring for Nonlinear Eigenproblems
Language: English
Authors: Voß, Heinrich 
Elssel, Kolja 
Keywords: nichtlineares Eigenwertproblem;dünnbesetzte Matrizen;iterative Projektionsmethode;Arnoldi Methode;automated multi-level substructuring;AMLS;nonlinear eigenproblem;sparse matrix;iterative projection method;Arnoldi method
Issue Date: Mar-2005
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 86
Abstract (english): In this paper we generalize the automated multi–level substructuring method to certain classes of nonlinear eigenvalue problems which can be partitioned into an essential linear and positive definite pencil and a small residual. The efficiency of the method is demonstrated by numerical examples modeling damped vibrations of a structure with nonproportional damping, a gyroscopic eigenproblem, and a rational eigenproblem governing free vibrations of a fluid–solid structure.
URI: http://tubdok.tub.tuhh.de/handle/11420/61
DOI: 10.15480/882.59
Institute: Mathematik E-10 
Type: Preprint (Vorabdruck)
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep86.pdf399,99 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

393
Last Week
0
Last month
6
checked on Sep 23, 2020

Download(s)

199
checked on Sep 23, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.