Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2798
Publisher DOI: 10.1007/s13398-020-00863-x
Title: Parameter dependence of solutions of the Cauchy–Riemann equation on weighted spaces of smooth functions
Language: English
Authors: Kruse, Karsten  
Keywords: Cauchy–Riemann; Parameter dependence; Smooth; Solvability; Vector-valued; Weight
Issue Date: 30-May-2020
Publisher: Springer
Source: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 3 (114): 141 (2020-07-01)
Abstract (english): 
Let Ω be an open subset of R2 and E a complete complex locally convex Hausdorff space. The purpose of this paper is to find conditions on certain weighted Fréchet spaces EV(Ω) of smooth functions and on the space E to ensure that the vector-valued Cauchy–Riemann operator ∂¯ : EV(Ω, E) → EV(Ω, E) is surjective. This is done via splitting theory and positive results can be interpreted as parameter dependence of solutions of the Cauchy–Riemann operator.
URI: http://hdl.handle.net/11420/6292
DOI: 10.15480/882.2798
ISSN: 1579-1505
Journal: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 
Institute: Mathematik E-10 
Document Type: Article
Project: Projekt DEAL 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Kruse2020_Article_ParameterDependenceOfSolutions.pdfVerlag-PDF410,04 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

148
Last Week
1
Last month
6
checked on Jul 5, 2022

Download(s)

79
checked on Jul 5, 2022

SCOPUSTM   
Citations

3
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons