TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Computer-controlled biaxial bioreactor for investigating cell-mediated homeostasis in tissue equivalents
 
Options

Computer-controlled biaxial bioreactor for investigating cell-mediated homeostasis in tissue equivalents

Publikationstyp
Journal Article
Date Issued
2020-07
Sprache
English
Author(s)
Eichinger, Jonas F.  
Paukner, Daniel  
Szafron, Jason M.  
Aydin, Roland C.  
Humphrey, Jay Dowell  
Cyron, Christian J.  
Institut
Kontinuums- und Werkstoffmechanik M-15  
TORE-URI
http://hdl.handle.net/11420/6945
Journal
Journal of biomechanical engineering  
Volume
142
Issue
7
Article Number
071011-1
Citation
Journal of Biomechanical Engineering 7 (142): 071011-1 (2020-07)
Publisher DOI
10.1115/1.4046201
Scopus ID
2-s2.0-85087854760
PubMed ID
32005993
Soft biological tissues consist of cells and extracellular matrix (ECM), a network of diverse proteins, glycoproteins, and glycosaminoglycans that surround the cells. The cells actively sense the surrounding ECM and regulate its mechanical state. Cell-seeded collagen or fibrin gels, so-called tissue equivalents, are simple but powerful model systems to study this phenomenon. Nevertheless, few quantitative studies document the stresses that cells establish and maintain in such gels; moreover, most prior data were collected via uniaxial experiments whereas soft tissues are mainly subject to multiaxial loading in vivo. To begin to close this gap between existing experimental data and in vivo conditions, we describe here a computer-controlled bioreactor that enables accurate measurements of the evolution of mechanical tension and deformation of tissue equivalents under well-controlled biaxial loads. This device allows diverse studies, including how cells establish a homeostatic state of biaxial stress and if they maintain it in response to mechanical perturbations. It similarly allows, for example, studies of the impact of cell and matrix density, exogenous growth factors and cytokines, and different types of loading conditions (uniaxial, strip-biaxial, and biaxial) on these processes. As illustrative results, we show that NIH/3T3 fibroblasts establish a homeostatic mechanical state that depends on cell density and collagen concentration. Following perturbations from this homeostatic state, the cells were able to recover biaxial loading similar to homeostatic. Depending on the precise loads, however, they were not always able to fully maintain that state.
Funding(s)
Experimentelle Untersuchung und mathematische Modellierung mechanisch gesteuerter Wachstums- und Umbauprozesse in postpubertären Schweineharnblasen  
TUHH
WeiterfĂĽhrende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback