Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3219
DC FieldValueLanguage
dc.contributor.authorRoschning, Benedikt-
dc.contributor.authorWeissmüller, Jörg-
dc.date.accessioned2020-12-03T12:34:55Z-
dc.date.available2020-12-03T12:34:55Z-
dc.date.issued2020-11-04-
dc.identifier.citationAdvanced Materials Interfaces 24 (7): 2001415 (2020)de_DE
dc.identifier.issn2196-7350de_DE
dc.identifier.urihttp://hdl.handle.net/11420/8118-
dc.description.abstractAdvanced Materials Interfaces published by Wiley-VCH GmbH This work studies the actuation of hybrid materials made from nanoporous gold, polypyrrole, and aqueous electrolyte. The deposition protocol affords a conformal polypyrrole coating on the entire internal interface of millimeter-sized nanoporous metal specimens made by dealloying. The hybrid material emerges when the remaining pore space is filled with perchloric acid. The metal serves as load-bearing and electronically conductive substrate, the polypyrrole as functional active component for actuation, and the aqueous electrolyte provides a pathway for fast ionic conduction. In this way, an actuator material is obtained that can be manufactured as monolithic bodies that can be subjected to compressive loads. Actuators with dimensions of millimeters in each spatial direction achieve characteristic times for actuation in the order of seconds and their work density is comparable to that of state-of-the-art piezoceramics. As a remarkable finding, the actuation strain scales with the square of the polypyrrole phase fraction. This is surprising in view of the linear scaling predicted by conventional micromechanical models. A micromechanical model that explains this behavior as the result of polypyrrole bridges that link adjacent struts of the metal skeleton is presented.en
dc.language.isoende_DE
dc.relation.ispartofAdvanced materials interfacesde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subjectactuationde_DE
dc.subjectnanoporous goldde_DE
dc.subjectpolypyrrolede_DE
dc.subjectstrain-charge couplingde_DE
dc.subject.ddc600: Technikde_DE
dc.titleNanoporous-gold-polypyrrole hybrid materials for millimeter-sized free standing actuatorsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3219-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0116871-
tuhh.oai.showtruede_DE
tuhh.abstract.englishAdvanced Materials Interfaces published by Wiley-VCH GmbH This work studies the actuation of hybrid materials made from nanoporous gold, polypyrrole, and aqueous electrolyte. The deposition protocol affords a conformal polypyrrole coating on the entire internal interface of millimeter-sized nanoporous metal specimens made by dealloying. The hybrid material emerges when the remaining pore space is filled with perchloric acid. The metal serves as load-bearing and electronically conductive substrate, the polypyrrole as functional active component for actuation, and the aqueous electrolyte provides a pathway for fast ionic conduction. In this way, an actuator material is obtained that can be manufactured as monolithic bodies that can be subjected to compressive loads. Actuators with dimensions of millimeters in each spatial direction achieve characteristic times for actuation in the order of seconds and their work density is comparable to that of state-of-the-art piezoceramics. As a remarkable finding, the actuation strain scales with the square of the polypyrrole phase fraction. This is surprising in view of the linear scaling predicted by conventional micromechanical models. A micromechanical model that explains this behavior as the result of polypyrrole bridges that link adjacent struts of the metal skeleton is presented.de_DE
tuhh.publisher.doi10.1002/admi.202001415-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.identifier.doi10.15480/882.3219-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue24de_DE
tuhh.container.volume7de_DE
dc.relation.projectSFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metallede_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85096689377de_DE
tuhh.container.articlenumber2001415de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoOpen access funding enabled and organized by Projekt DEAL.de_DE
item.creatorOrcidRoschning, Benedikt-
item.creatorOrcidWeissmüller, Jörg-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.mappedtypeArticle-
item.creatorGNDRoschning, Benedikt-
item.creatorGNDWeissmüller, Jörg-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.orcid0000-0001-5176-4332-
crisitem.author.orcid0000-0002-8958-4414-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
admi.202001415.pdfVerlag-PDF1,89 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

120
Last Week
0
Last month
3
checked on Sep 25, 2021

Download(s)

37
checked on Sep 25, 2021

SCOPUSTM   
Citations

2
Last Week
1
Last month
0
checked on Sep 18, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons