TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Constitutive artificial neural networks : a fast and general approach to predictive data-driven constitutive modeling by deep learning
 
Options

Constitutive artificial neural networks : a fast and general approach to predictive data-driven constitutive modeling by deep learning

Citation Link: https://doi.org/10.15480/882.4024
Publikationstyp
Journal Article
Date Issued
2021-03-15
Sprache
English
Author(s)
Linka, Kevin  
Hillgärtner, Markus  
Abdolazizi, Kian Philipp  
Aydin, Roland C.  
Itskov, Mikhail  
Cyron, Christian J.  
Institut
Kontinuums- und Werkstoffmechanik M-15  
TORE-DOI
10.15480/882.4024
TORE-URI
http://hdl.handle.net/11420/8334
Journal
Journal of computational physics  
Volume
429
Article Number
110010
Citation
Journal of Computational Physics (429): 110010 (2021-03-15)
Publisher DOI
10.1016/j.jcp.2020.110010
Scopus ID
2-s2.0-85097778019
Publisher
Elsevier
In this paper we introduce constitutive artificial neural networks (CANNs), a novel machine learning architecture for data-driven modeling of the mechanical constitutive behavior of materials. CANNs are able to incorporate by their very design information from three different sources, namely stress-strain data, theoretical knowledge from materials theory, and diverse additional information (e.g., about microstructure or materials processing). CANNs can easily and efficiently be implemented in standard computational software. They require only a low-to-moderate amount of training data and training time to learn without human guidance the constitutive behavior also of complex nonlinear and anisotropic materials. Moreover, in a simple academic example we demonstrate how the input of microstructural data can endow CANNs with the ability to describe not only the behavior of known materials but to predict also the properties of new materials where no stress-strain data are available yet. This ability may be particularly useful for the future in-silico design of new materials. The developed source code of the CANN architecture and accompanying example data sets are available at https://github.com/ConstitutiveANN/CANN.
Subjects
Constitutive modeling
Data-driven
Deep learning
Hyperelasticity
MLE@TUHH
DDC Class
600: Technik
Funding(s)
SFB 986: Teilprojekt B09 - Mikrostrukturbasierte Klassifizierung und mechanische Analyse nanoporöser Metalle durch maschinelles Lernen  
Vaskuläre Wachstums- und Umbildungsprozesse in Aneurysmen  
I³-Lab - Modell-gestütztes maschinelles Lernen für die Weichgewebsmodellierung in der Medizin  
More Funding Information
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 257981274; Projektnummer 192346071 -SFB 986. Moreover, K. P. Abdolazizi and C. J. Cyron greatfully acknowledge financial support from TUHH within the I3-Lab ‘Modellgestütztes maschinelles Lernen fuer die Weichgewebsmodellierung in der Medizin’.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0021999120307841-main.pdf

Size

1.58 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback