Browsing by browse.metadata.journals "ACS applied materials & interfaces"
Now showing1 - 4 of 4
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication without files Adsorption and Inactivation of SARS-CoV-2 on the Surface of Anatase TiO2(101)(Soc., 2023-02-15); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.Publicationtype: Journal ArticleCitation Publisher Version:ACS Applied Materials and Interfaces 16 (6): 8770-8782 (2023-02-15)Publisher DOI:10.1021/acsami.2c2207842 - Some of the metrics are blocked by yourconsent settings
Publication without files Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium DioxideA strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons.Publicationtype: Journal ArticleCitation Publisher Version:ACS Applied Materials and Interfaces 16 (8): 10466-10476 (2016-04-27)Publisher DOI:10.1021/acsami.6b0082786 - Some of the metrics are blocked by yourconsent settings
Publication with files Switchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO2(ACS, 2024-12-11) ;Peng, Jun; ; ; ; ;Thonakkara James, Nithin; ; ; ; ; ; ; Photonic crystals (PhCs) are optical structures characterized by the spatial modulation of the dielectric function, which results in the formation of a photonic band gap (PBG) in the frequency spectrum. This PBG blocks the propagation of light, enabling filtering, confinement, and manipulation of light. Most of the research in this field has concentrated on static PhCs, which have fixed structural and material parameters, leading to a constant PBG. However, the growing demand for adaptive photonic devices has led to an increased interest in switchable PhCs, where the PBG can be reversibly activated or shifted. Vanadium dioxide (VO2) is particularly notable for its near-room-temperature insulator-to-metal transition (IMT), which is accompanied by significant changes in its optical properties. Here, we demonstrate a fabrication strategy for switchable three-dimensional (3D) PhCs, involving sacrificial templates and a VO2 atomic layer deposition (ALD) process in combination with an accurately controlled annealing procedure. The resulting VO2 inverse opal (IO) PhC achieves substantial control over PBG in the near-infrared (NIR) region. Specifically, the synthesized VO2 IO PhC exhibits PBGs near 1.49 and 1.03 μm in the dielectric and metallic states of the VO2 material, respectively, which can be reversibly switched by adjusting the external temperature. Furthermore, a temperature-dependent switch from a narrow-band NIR reflector to a broad-band absorber is revealed. This work highlights the potential of integrating VO2 into 3D templates in the development of switchable photonics with complex 3D structures, offering a promising avenue for the advancement of photonic devices with adaptable functionalities.Publicationtype: Review ArticleTORE-DOI:https://doi.org/10.15480/882.14161Citation Publisher Version:ACS Applied Materials and Interfaces 16 (49): 67106-67115 (2024-12-11)Publisher DOI:10.1021/acsami.4c137896 5 - Some of the metrics are blocked by yourconsent settings
Publication without files Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite(American Chemical Society, 2017-04-03); ; ; ; We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostatting, i.e., the way that the heat generated through deformation and friction is removed from the system, has crucial impact on tribological and materials related phenomena. By adopting an electron-phonon coupling approach to parametrize the thermostat of the system, thus including the electronic contribution to the thermal conductivity of iron, we can reproduce the experimentally measured values that yield realistic temperature gradients in the work piece. We compare these results to those obtained by assuming the two extreme cases of only phononic heat conduction and instantaneous removal of the heat generated in the machining interface. Our discussion of the differences between these three cases reveals that although the average shear stress is virtually temperature independent up to a normal pressure of approximately 1 GPa, the grain and chip morphology as well as most relevant quantities depend heavily on the mode of thermostatting beyond a normal pressure of 0.4 GPa. These pronounced differences can be explained by the thermally activated processes that guide the reaction of the Fe lattice to the external mechanical and thermal loads caused by nanomachining.Publicationtype: Journal ArticleCitation Publisher Version:ACS Applied Materials & Interfaces 9 (15), 13713-13725 ( 2017)Publisher DOI:10.1021/acsami.7b01237135