DC FieldValueLanguage
dc.contributor.authorLe Borne, Sabine-
dc.contributor.authorShahmuradyan, Lusine-
dc.contributor.authorSundmacher, Kai-
dc.date.accessioned2020-02-18T15:22:15Z-
dc.date.available2020-02-18T15:22:15Z-
dc.date.issued2015-03-04-
dc.identifier.citationComputers and Chemical Engineering (74): 115-127 (2015-03-04)de_DE
dc.identifier.issn0098-1354de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4965-
dc.description.abstractA variety of production processes in chemistry and biotechnology are concerned with particles dispersed in an environmental phase. The particle distribution is mathematically described by the solution of population balance equations of integro-differential type. We are concerned with the aggregation process: it invokes an integral term that is usually numerically expensive to evaluate and often dominates the total simulation cost. We will expose the algorithmic details of an efficient approach based on a separable approximation of the aggregation kernel and a subsequent fast Fourier transformation. This approach reduces the originally quadratic complexity to an almost optimal complexity O(nlogn) in the dimension of the approximation space. We include numerical tests illustrating its application to representative aggregation kernels from the literature. While originally developed in the context of a discretization with piecewise constant functions, we illustrate how these ideas can be applied in the setting of the popular sectional methods.en
dc.language.isoende_DE
dc.relation.ispartofComputers & chemical engineeringde_DE
dc.subjectAggregationde_DE
dc.subjectConvolutionde_DE
dc.subjectFFTde_DE
dc.subjectPopulation balance equationde_DE
dc.subjectSeparable kernel approximationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleFast evaluation of univariate aggregation integrals on equidistant gridsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishA variety of production processes in chemistry and biotechnology are concerned with particles dispersed in an environmental phase. The particle distribution is mathematically described by the solution of population balance equations of integro-differential type. We are concerned with the aggregation process: it invokes an integral term that is usually numerically expensive to evaluate and often dominates the total simulation cost. We will expose the algorithmic details of an efficient approach based on a separable approximation of the aggregation kernel and a subsequent fast Fourier transformation. This approach reduces the originally quadratic complexity to an almost optimal complexity O(nlogn) in the dimension of the approximation space. We include numerical tests illustrating its application to representative aggregation kernels from the literature. While originally developed in the context of a discretization with piecewise constant functions, we illustrate how these ideas can be applied in the setting of the popular sectional methods.de_DE
tuhh.publisher.doi10.1016/j.compchemeng.2014.12.011-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume74de_DE
tuhh.container.startpage115de_DE
tuhh.container.endpage127de_DE
dc.relation.projectSPP 1679: Dynamische Simulation vernetzter Feststoffprozessede_DE
dc.relation.projectSPP 1679: Teilprojekt "Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simulation multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation"-
dc.identifier.scopus2-s2.0-84936943295-
local.status.inpressfalsede_DE
local.funding.infoDeutsche Forschungsgemeinschaft (DFG)de_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorOrcidLe Borne, Sabine-
item.creatorOrcidShahmuradyan, Lusine-
item.creatorOrcidSundmacher, Kai-
item.mappedtypeArticle-
item.creatorGNDLe Borne, Sabine-
item.creatorGNDShahmuradyan, Lusine-
item.creatorGNDSundmacher, Kai-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.orcid0000-0003-3251-0593-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoHE 4526/16-2-
crisitem.project.grantnoBO 4141/1-2-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

86
Last Week
1
Last month
2
checked on Aug 8, 2022

SCOPUSTM   
Citations

12
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.